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Independence and Cochran’s theorem

e (Independence between two linear forms of a multivariate normal) Let X ~ N (u, V),
Y; =a; +B; X and Yy = as + BoX. Then Y; and Y are independent if and only if
B, VBI = 0.

Proof:

e Consider the normal linear model y ~ A/ (Xb, ¢*1,,)
— Using A = (1/0%)(I — Px), we have
SSE/o® = |[é]l3/0" = y" Ay ~ x;_p
where r = rank(X). Note the noncentrality parameter is

b= %(Xb)T(l/UQ)(I — Py)(Xb) = 0 for all b.

— Using A = (1/0%)Px, we have
SSR/a* = [[3|lz/0* = y" Ay ~ x7(9),

with the noncentrality parameter

1 1
¢ = 5(Xb)"(1/0*)Px(Xb) = —||Xbl[;.

— The joint distribution of y and € is

L P e (S0 e )

So y is independent of €. Thus ||y||3/0? is independent of ||€||3/0? and

1y15/0%/r 1 .
F= NFrnfr — || Xb .
|[€[I5/a%/(n — 1) ’ (QO-QH 12)
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e (Independence between linear and quadratic forms of a multivariate normal) Let X ~
N (p, V). Let A be symmetric with rank s. Then BX and X7 AX are independent if
BVA = 0.

Proof:

e (Independence between two quadratic forms of a multivariate normal) Let X ~ N (u, V),
A be symmetric with rank r, and B be symmetric with rank s. If BVA = 0, then
XTAX and XT"BX are independent.

Proof:

e (Cochran’s theorem) Let y ~ N (u,02L,) and A;, i = 1,...,k be symmetric idempo-
tent matrix with rank s;. If 3 | A; = I,,, then (1/0%)y” A;y are independent X2 (¢;),
with ¢; = 55 p” A;p and Zle s; = n.

Proof:
e Application to the one-way ANOVA: y;; = 11+ a; + €;;. We have the classical ANOVA
table
Source  df  Projection SS Noncentrality
Mean 1 P, SSM = ny? s=n(p + @)?
Group a—1 Px—-P; SSA =737 ngl —ny? 5oz g iy — @)?
Error n—a I1-Px SSE=3" 3" (yij — 0:) 0
Total n I SST =333, vi; S ni(p+ o)
Bootstrap

We follow JF Chapter 21 to discuss the version of nonparametric bootstrap here. The term
bootstrapping, coined by Efron (1979), refers to using the sample to learn about the sampling
distribution of a statistic without reference to external assumptions — as in “pulling oneself
up by one’s bootstraps.”

Bootstrapping offers a number of advantages:
e The bootstrap is quite general, although there are some cases in which it fails.

e Because it does not require distributional assumptions (such as normally distributed
errors), the bootstrap can provide more accurate inferences when the data are not well
behaved or when the sample size is small.

e [t is possible to apply the bootstrap to statistics with sampling distributions that are
difficult to derive, even asymptotically.

e [t is relatively simple to apply the bootstrap to complex data collection plans.



Bootstrap standard errors

For simplicity, we start with an iid sample Y1, ..., ¥}, with each ¥; having distribution function
F, and a real parameter 6 is estimated by 6. When necessary, we think of # as a function of
the sample, 6(Y7,...,Y,). The variance of 6 is then

Varp(é) = f{é(yl, ey Yn) — Ep(é)}z dF (y1) ... dF(yy,),

where

Br(0) = [00n.- o) dF () . dF ()

The nonparametric bootstrap estimate of Var(é) is just to replace F' by the empirical distri-
bution function F,(y) =n~'>7"  I(Y; < y):

Vars, () = [ {0001....00) — B 0} P . dF (3,),

Please refer to Chapter 11 of Boos and Stefanski for a complete discussion.
A practical bootstrapping procedure follows:

1. Create r number of bootstrap replications or pseudo-replicates — that is, for each boot-
strap sample (replicate) b = 1,...,r, we randomly draw n observations {Y;*, ¥, ... Y;*}
with replacement from the original sample {Y7,Y3,...,Y,}.

2. Obtain an estimate é;‘ of each bootstrap sample.

3. Use the distribution of ég,“ to estimate properties of the sampling distribution of 8.For
example, the sample standard deviation of 6 gives the bootstrap standard error esti-

mates of @*(é)

Bootstrap example

We use the example in JF 21.1 for illustration. Imagine that we sample (fake) ten working,
married couples, determining in each case the husband’s and wife’s income, as recorded in
the table (JF table 21.3) below.



Observation husband’s Income Wife’s Income Difference Y;

1 34 28 6
2 24 27 -3
3 50 45 )
4 o4 o1 3
) 34 28 6
6 29 19 10
7 31 20 11
8 32 40 -8
9 40 33 7
10 34 25 9

A point estimate of this population mean difference pu is the sample mean,

v 2Y 6

n

Elementary statistical theory tells us that the standard deviation of the sampling distribution
of sample means is SD(Y) = o/4/n, where o is the population standard deviation of Y.
Because we do not know o in most real applications, the usual estimator of ¢ is the sample
standard deviation

G, ui-Y)

n—1

and we obtain the 95% confidence interval by

~

S

vn
In the present case, S = 5.948, SE(Y) = 5.948/1/10 = 1.881, and 90,025 = 2.262. The 95%
confidence interval for the population mean g is therefore

Y £ tn 10025

4.6 £2.262 x 1.881 = 4.6 +4.255

or equivalently,
0.345 < p < 8.855

To illustrate the bootstrap procedure,

1. We can draw r = 2000 bootstrap samples (using a computer), each of size n = 10,
from the original data given in table 21.3.
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2. We then calculate the mean Y;*, with b = 1,...,r for each bootstrap sample.

Z;=1 (Yb*_i:/*)Q
r—1

3. The bootstrap estimate of the standard error is then given by SE" (Y*) =

From the 2000 replicates that Dr. Fox drew, he obtained Y* = 4.693 and SE(Y*) = 1.750.
Both are quite close to the theoretical values (read JF 21.1 for a discussion over 4/n/n — 1
for the differences in calculating the standard errors, which is often negligible, especially
when n is large).

Now, we can get a bootstrap estimate for the 100(1 — «)% confidence interval by using the
a/2 and (1 — a/2) quantiles of the bootstrap sampling distribution of §; which means

1. We order 6 such that éz"l) < éa) <0< HAE‘;).

2. Find the two quantiles Hflower) = Hz‘a/er) and QZ‘upper) = 02‘(1_a/2)x7,)
3. Construct the confidence interval by (67;,,,c.): Opper))-

In this case,
lower = 2000(0.05/2) = 50

upper = 2000(1 — 0.05/2) = 1950

Y(ﬂf%o) =178
0.7T7<pu<78

Bias-corrected bootstrap intervals

We introduce the bias-corrected version of the above bootstrap intervals through two “cor-
rection factors” Z and A defined below:.

1. Calculate

r

7 — -1 [Zl:=1 ](ég < é)]

where ®~1(-) is the inverse of the standard-normal distribution and >, _, I (0 < 0)/ris

the proportion of bootstrap replicates below the estimate 6. 1f the bootstrap sampling
distribution is symmetric and if 6 is unbiased, then this proportion will be close to 0.5,
and the “correction factor” Z will be close to 0.

2. Let é(_i) represent the value of 0 produced when ith observation is deleted from the
sample (known as the jackknife values of é) There are n of these quantities. Let
0=>Y é(_i)/n. Then calculate

A Z?Zl(é - é(_l))s

o[58 -]




With the correction factors Z and A, compute

Z_Za/Z
A=D1 Z
1 [ +1—A(Z—za/2)]
Z—i—Za/Q
A, =D | 7 +
2 [ 1—-A(Z + za/2)]

And the corrected interval is

A

07 )<0<é2‘

(lower upper)

where lower® = rA; and upper* = r A, (rounding or interpolating as required).

When the correction factors Z and A are both 0, Ay = ®(—z4/2) = /2 and Ay = P(2,/2) =
1 —o/2.

For the 2000 bootstrap samples that Dr. Fox drew, there are 926 bootstrapped means below
Y = 4.6, and so Z = 71(926/2000) = —0.09288. The Y_; are 4.444,5.444,...,4.111. And
A = —0.05630. Using the correction factors Z and A,

—0.09288 — 1.96
Ay = ® | —0.09288 +
' i 1 — [~0.05630(—0.09288 — 1.96)] |

— (—2.414) = 0.007889

—0.09288 + 1.96
i 1 — [~0.05630(—0.09288 + 1.96)]
— ®(1.597) = 0.9449

As = @ [—0.09288 +

Multiplying by 7, we have 2000 x 0.007889 ~ 16 and 2000 x 0.9449 ~ 1890, from which
Y(TG) <K< }7&890)
—04<pu<773

Logistic regression

So far, we only considered cases where the response variable is continuous. Logistic regression
belongs in the family of Generalized Linear Model that can be used for analyzing binary
responses.

Motivation Let p be the probability of a specific outcome. We are interested in how this
probability is affected by the explanatory variables. A naive approach could be:

p = Bo+ Bix1 + Pawg + €

Problem p must be between 0 and 1.



Solution Model log odds of p (i.e. logit of p) which are defined as

p
-D
logit = log(1 b

odds = 7 € [0,0)

) € (—o0, )

This forms the logistic regression

logit(p) = log(%) = Bo + Bix1 + Boxo

Note that

1. Increase in log odds <= increase in p.
Decrease in log odds <= decrease in p.

2. No € in logistic regression because we observe a binary outcome y;, not p itself.

The density
flyilps) = p' (1 —pi)' ™"
— eYilog(pi)+(1-y;) log(1—pi)

_ pYilos(755,)+log(1—pi)

where
exi P

— (mean function, inverse link function)

E i) — Pi = T T4
(i) =p o

x; 3 = log(1 b ) (logit link function)

— Vi

We obtain parameter estimates by maximum likelihood. Read page 131 - page 133 of Dr. Hua
Zhou’s Computational Statistics notes (link) for algorithms to find these MLE (maximum
likelihood estimates).


http://hua-zhou.github.io/teaching/st758-2014fall/ST758-2014-Fall-LecNotes.pdf
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